Statistical Methods and Data Analysis

What is statistics?

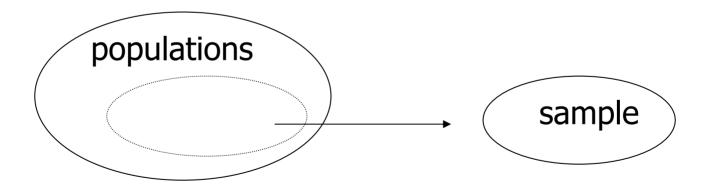
- The science of learning from data.
- Plays an important role in almost all areas of science, business, industry

Why study statistics?

- Interpret the results of sampling (survey or experiment)
- Evaluate published numerical facts
- Forecast sales and profit in business

Some definitions

- Populations: the set of all measurements
- Samples: set of measurements selected from the population



Median

- The middle value when the measurements are arranged from lowest to highest.
- 95 86 78 90 62 73 89 92 84 76
- 62 73 76 78 84 86 89 90 92 95
- Median = (84 + 86) / 2 = 85

Mean

 Mean: sum of measurements divided by the total number. (Average, the balancing point of the data set).

$$\frac{1}{y} = \frac{\sum y_i}{n} = \frac{y_1 + y_2 + \dots + y_n}{n}$$

• μ - population mean; y - sample mean

Variance

 Variance: the sum of the squared deviations divided by n-1

$$S^{2} = \frac{\sum (y - y)^{2}}{n - 1}$$

- Measure of variability,
- S² represents the sample variance,
- $\sigma^2_{(sigma)}$ represents the population variance

Standard Deviation

Standard deviation (SD): positive square root of the variance

$$S = \sqrt{\frac{\sum (y - y)^2}{n - 1}}$$

- The same units as the original data,
- S is sample SD; σ is population SD

Sensory tests:

- 1. Discriminative tests
 - Determine whether a difference exists between samples.
 - Triangle test, Duo-trio test, two-out-of-five test...
- 2. Descriptive tests
 - Determine the nature and intensity of the differences.
 - Scaling methods; descriptive analysis methods.
- 3. Affective tests
 - Based on either a measure of preference (or acceptance) or a measure from which we can determine relative preference.
 - Paired comparison preference test; hedonic test; ranking test.

Discriminative tests

- Triangle test
 - Whether or not a detectable difference exists between two samples.
- Paired comparison test
 - To compare the intensity of some particular characteristics.

Descriptive tests

- Scaling methods:
 - Nine-point scale, seven-point scale.
- A statistical test: T-test, F-test,
 - 1. Research hypothesis, H_{a,}, alternative hypothesis
 - 2. Null hypothesis, H_o
 - 3. Test statistics, T.S.
 - 4. Rejection region, R.R.
 - 5. Check assumption and draw conclusion

Research Hypothesis

- $H_0: \mu > 4$ (null)
- $H_a: \mu \le 4$ (alternative)
- $H_0: \mu_1 = \mu_2$, there is no difference (null)
- $H_a: \mu_1 \neq \mu_2$, there is a significant difference (alternative)
- Type I error: when the null hypothesis is rejected when it is true.
- Type II error: when the null hypothesis is accepted when in fact it is false.

The level of significance (α)

- α : the probability of making a type I error.
 - 0.05 (5%): 1/20 of saying there is a difference when there is no difference
 - 0.01 (1%): 1/100
- β : the probability of making a type II error.

Summary of a statistical test

- One-tailed test: directional difference test.
 - Case 1. H_0 : $\mu \le \mu_o$ vs. H_a : $\mu > \mu_o$ (right-tailed test)
 - Case 2. H_0 : $\mu \ge \mu_o$ vs. H_a : $\mu < \mu_o$ (left-tailed test)
- Two-tailed test: no expectation about the results.
 - Case 3. H_0 : $\mu = \mu_0$ vs. H_a : $\mu \neq \mu_0$ (two-tailed test)

T.S.:

- *P*: level of significance or *p*-value
- If the *p*-value $\leq \alpha$, then reject H₀
- If the *p*-value > α , then accept H₀

• Student's t distribution: determine whether two samples have the same mean.

$$t = \frac{\overline{y} - u_0}{s / \sqrt{n}}$$

A Paired T-test

- $H_0: \mu_1 = \mu_{2,}$ no difference,
- H_a : $\mu_1 \neq \mu_{2}$, significant difference
 - If the t > t_{α} , then reject H_0
 - If the $t \leq t_{\alpha}$, then accept H_0
- Assumes that the intervals between categories are equal.
- df: degree of freedom, df = n -1

Analysis using t-test

1. Calculate average difference:

$$\overline{d} = \overline{A} - \overline{B}$$

2.
$$S = \sqrt{\frac{\left\{\sum d^{2} - \left[\left(\sum d^{2}\right) / n\right\}\right\}}{n-1}}$$

3.
$$t = \frac{\overline{d}}{S / \sqrt{n}}$$

 $\overline{d} = \overline{A} - \overline{B}$

= 4.7 - 3.1 = 1.6

- ∑d = 32
- $\sum d^2 = 114$
- (∑d)²= (32)²=1024

$$S = \sqrt{\frac{\left\{\sum d^2 - \left[\left(\sum d^2\right)/n\right\}\right\}}{n-1}}$$

• $S = ((114-1024/20)/19)^{0.5}=1.82$

- df = n-1 = 20 −1 = 19
- t_α = 2.093
- t = 3.93

T-test

- 1. Specify the null and alternative hypothesis.
- 2. Specify a value for α
- 3. Determine the weight of evidence (t, *p*)

- t=3.93 > t_α=2.093
- Conclusion: Cheese A was significantly more bitter than cheese B ($P \le 0.05$)

F-test

- Test of whether two samples are drawn from different populations have the same SD or variance, with specified confidence level. Samples may be of different size.
- The variability of a population is as important as the mean
- As little variation as possible

F-test: comparing two population variances

- $H_0: \sigma_1^2 = \sigma_2^2$
- $H_a: \sigma_1^2 \neq \sigma_2^2$
 - If the $F \ge F_{\alpha,df1,df2}$, then reject $H_{0,}$ there is significant difference
 - If the F < F $_{\alpha,df1,df2}$, then accept H $_{0,}$ there is no significant difference
 - If the *p*-value $\leq \alpha$, then reject H₀
 - If the *p*-value > α , then accept H₀

Analysis of variance

A statistical test about more than two population means

Assumptions

- Each set has a normal distribution
- The variances of all sets are equal
- All sets are independent random samples

ANOVA

- $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$
- H_a : at least one of the means differs from the rest
 - If the p ≤ α, then reject H₀, at least one of the means differs from the rest
 - If the p > α, then accept H₀, there is no significant difference among four means

ANOVA- single factor analysis

- df: degree of freedom : df=n-1
- SS: sum of squares
- MS: the mean square
- F: the variance ratio
- STAT 412, 512

Example: hardness of four wieners

- $P = 0.00 < \alpha = 0.05$, reject H₀
- Conclusion: there was a significant difference in hardness among the four brands of wieners (p ≤ 0.01).

• (F = 16.74 >
$$F_{\alpha}$$
=2.95 , reject H₀)

Problem of one-way ANOVA

- Don't know which means differ from each other
- $\mu_{1,}$ $\mu_{2,}$ μ_{3} , μ_{4}

ANOVA-two way without replication

- Rows : *p*=0.22 > α=0.05
- Columns: *p*=0.00 < α=0.05
- Conclusions: there is a significant difference among the protein content of four types of cereals.

ANOVA- different treatments

- Fisher's LSD
- Tukey's test
- Dunnett's test: compare with a control

Fisher's LSD

- $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$
- H_a: at least one of the means differs from the rest
- If H₀ is rejected, define the least significant difference (LSD)
- $\mu_1 \mu_2 > LSD$, different means
- $\mu_1 \mu_2 < LSD$, same means

Minitab

Stat\ANOVA\One-way\Comparisons\

- Tukey's
- Fisher's
- Dunnett's

6.5 9.2 12.4 4.4 C B A C